
MATERIAL AND METHODS
Pipeline Overview

The pipeline, shown in Figure 1, creates synthetic tibial fractures in seven

steps:

1. Healthy bone segmentation: A healthy tibia is segmented from a

computertomography (CT) scan using TotalSegmentator [2]. Manual

correction is needed to ensure high segmentation quality. Anatomical

landmarks should also be provided.

2. Fracture generation: A parametric model simulates a fracture in the

segmentation. Fracture position and orientation, can be controlled.

3. First CT adjustment: The CT image is updated by assigning realistic

Hounsfield Units (HU) values to fracture regions.

4. Fragment displacement: Fragment is displaced using rigid transformations

(translation + rotation).

5. Second CT adjustment: CT is updated to reflect the new fragment position.

6. Multifragmentation: Large fragment is split (voxel clustering).

7. Third CT adjustment: CT is updated to reflect the multifragmentation step.

INTRODUCTION
Traumatic tibial fractures are complex and require careful preoperative

planning to ensure favorable clinical outcomes. However, current workflows

are slow and rely heavily on manual effort. To address this, we introduce the

REPAIR project [1], which aims to support clinicians by using Machine Learning

(ML) to automate tasks such as fragment segmentation, fracture reduction and

plating. These ML models require large labeled datasets, which are often

scarce and expensive to produce. To overcome this, a parametric model is

proposed that simulates fractures from intact bone segmentations, enabling

automatic large-scale dataset generation without manual labeling. The

synthetic data supports core clinical tasks and improves planning efficiency for

tibia fracture osteosynthesis.
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RESULTS AND DISCUSSION
Covering a wide range of simple and complex types, 1000 synthetic tibial

fracture cases were generated (Figure 2). Each case includes CT volumes,

segmentation masks, and 3D surface models. Unlike most clinical datasets,

the data is balanced across all fracture classes.

A clinician evaluated a subset of cases. The average quality score was 3.45/5,

with high ratings for segmentation fidelity (3.89/5) and fracture location

(3.77/5). Lower scores for multifragmentation behavior (3.2/5) and fragment

displacement (2.89/5) indicate potential areas for improvement.

Preliminary results for key downstream tasks (Figure 3) demonstrate the

applicability of the synthetic data to support fracture osteosynthesis planning.

All tasks were performed using only the synthetic data, without any manual

labeling.
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OBJECTIVES
The goal is to generate high-quality synthetic data of tibial fractures from intact

bone segmentations to avoid tedious manual labeling. This data should cover a

wide range of fracture types and is intended to train ML models for

osteosynthesis tasks such as fragment segmentation, fracture reduction and

plating. To automate and improve the precision of osteosynthesis planning

tasks such as fracture reduction and plating, learning from a diverse set of

fractures is required, and synthetically generated models enable to identify,

classify, and predict optimal treatment strategies for real-world fracture cases

without the need for extensive manual labeling.

Figure 3. Some downstream applications enabled by our synthetic data. 1:

Fracture reduction. 2: Virtual plating. 3: Biomechanical simulation. 4: 3D

printing.

Figure 1. Overview of the synthetic fracture generation pipeline.

Figure 2. Fracture samples generated by our method. 1-2: Unicondylar

fracture before and after fragment displacement. 3: Depression fracture. 4:

Shaft fracture. 5: Bicondylar fracture (Schatzker V classification).
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